
Encrypted Search
Seny Kamara

2

4%

14,717,618,286*

* since 2013

Why so Few?

3

“…because it would have hurt Yahoo’s ability to index and search message data…”

— J. Bonforte in NY Times

Q: can we search on encrypted data?

4

5

Can we?

[SWP00]

O(#docs)

[Goh03,CM05]

sec. defs

[Goh03,CM05]

OPT time

[CGKO06]

adaptive sec. defs

[CGKO06]

dynamic in OPT time

[KPR12,NPG14,CJJJKRS14]

forward private

[SPS14,B16,…]

dual secure

[AKM19]

I/O efficient

[CJJJKRS14,CT14,…]

parallel

[KPR13]

multi-user

[CGKO06,JJKRS13,PPY18,…]

snapshot secure

[AKM19]

graphs

[CK10,MKNK15]

relational DBs

[HILI02,KC05,

PRZB11,KM19] beyond search

[CK10]

attacks

[IKK12,CGPR15,ZKP16,BKM19] Boolean in sub-linear

[CJJJ+13,PKVK+14,KM17]

ranges

[PBP16,…]

range attacks

[NKW15,KKNO17,LMP18,…]

leakage suppression

[KMO18,KM19]

Interdisciplinary

6

Cryptography

Databases

Graph
Algorithms

OptimizationStatistics

Information

Retrieval

Data Structures

Distributed

Systems

Real-World Problem

• Major companies

• Microsoft, SAP

• Cisco, Google

Research

• Hitachi, Fujitsu

• more…

7

• Funding agencies

• NSF

• IARPA

• DARPA

• Startups

• too many to list

Q: what about real-world customers?

8

Is this Real?
• Banks

• Government agencies (US & Europe)

• Fintech companies

• Tech companies

• Healthcare

• Biotech

• …

9

Encrypted Search

10

Encrypted Search
• Sub-field focused on designing

• sub-linear algorithms over encrypted data

• search engines & databases

• Searchable (symmetric) encryption (SSE)

• keyword search over collection of encrypted files/documents

• ElasticSearch, Lucene, …

• Encrypted databases (EDBs)

• encrypted NoSQL & SQL (relational) databases

• Postgres, SQL Server, MongoDB, CouchDB, …

11

Encrypted Search (Building Blocks)

12

Property-Preserving
Encryption (PPE)

Fully-Homomorphic
Encryption (FHE)

Functional
Encryption

Oblivious RAM
(ORAM)

Structured
Encryption (STE)Very leaky

Ω(n)

O(n)

Efficiency

LeakageFunctionality

13

Core Primitive: Structured Encryption
• Schemes that

• encrypt data structures (e.g., multi-maps, dictionaries, …)

• support private queries on encrypted structures

• Applications

• sub-linear searchable encryption (i.e., index-based SSE)

• encrypted NoSQL & SQL databases

• encrypted graph algorithms

• secure multi-party computation

14

Structured Encryption  
[Chase-K.10]

15

Setup(1k, DS) ⟶ (K, EDS)

Token(K, q) ⟶ tk

Query(EDS, tk) ⟶ ans

DS EDS

ans

tk

Desiderata

16

Setup leakage

Query leakage

Size of EDS

Size of state

Size of token
Query time

ans

EDS

tk

Structured Encryption  
[Chase-K.10]

• Many variants of STE

• response-revealing

• EDS query reveals answer in plaintext

• response-hiding

• EDS query reveals encrypted answer

• non-interactive queries

• clients sends single message called a token

• interactive queries

• client and server execute multi-round protocol

17

Background: Data Structures
• Dictionaries map labels to values 

	

• Put: DX[ℓ2] := v2

• Get: DX[ℓ2] returns v2

• Multi-Maps map labels to tuples 
 
	

• Put: MM[ℓ3]:= (v2,v4)

• Get: MM[ℓ3] returns (v2,v4)

18

DX

ℓ1 v1

ℓ2 v2

ℓ3 v3

MM

ℓ1 v1

ℓ2 v3

ℓ3 v2

v3 v4

v4

Structured Encryption: Encrypted Dictionary 
[Chase-K.10]

19

Setup(1k, DS) ⟶ (K, EDX)

Token(K, q) ⟶ tk

Query(EDX, tk) ⟶ ans

DX EDX

ans

tk

Structured Encryption: Encrypted Multi-Map  
[Chase-K.10]

20

Setup(1k, DS) ⟶ (K, EMM)

Token(K, q) ⟶ tk

Query(EMM, tk) ⟶ ans

MM EMM

ans

tk

Adversarial Models

21

EDS0

ans ans

EDS0

EDS0

EDS1

EDS2

Persistent Snapshot

tk

u

tk

u

EDS0

tk

u

View View

Persistent (Adaptive) Security  
[Curtmola-Garay-K.-Ostrovsky06,Chase-K.10]

• An STE scheme is (ℒS, ℒQ)-secure vs. a persistent adv. if

• it reveals no information about the structure beyond ℒS

• it reveals no information about the structure and query beyond

ℒQ

22

Snapshot (Adaptive) Security  
[Amjad-K.-Moataz19]

• We say that an STE scheme is ℒSnp-secure vs. a snapshot adv. if

• it reveals no information about the structure beyond ℒSnp

23

Efficiency vs. Persistent Security

24

Query Time

Structured Property-preserving

Fully-homomorphic

Oblivious

Functional (sk) Functional (pk)

Leakage

Not Scientific!

Efficiency vs. Snapshot Security

25

Query Time

Fully-homomorphic

Leakage

Not Scientific!

Structured
Property-preserving

Oblivious

Functional (sk) Functional (pk)

Leakage

26

Leakage-Parameterized Definitions

[Curtmola-Garay-K.-Ostrovsky, Chase-K.10]

• This area is about tradeoffs

• but traditional cryptographic definitions don’t capture tradeoffs

• in 00’s, different approaches were proposed to capture leakage

• #1: limit adversary’s power in the proof

• #2: make assumptions on data (e.g., high entropy)

• Original motivations for leakage-parameterized definitions

• Approaches #1 & #2 are misleading (sweep leakage under the rug)

• Leakage should be made explicit and not be implicit

• gives clear target for cryptanalysis

• makes it (somewhat) easier to compare schemes

27

Modeling Leakage

• Each scheme has a leakage profile: 𝚲 = (ℒS, ℒQ, ℒU)

• where ℒS = (patt1, …, pattn) is the Setup leakage

• ℒQ = (patt1, …, pattn) is the Query leakage

• ℒU = (patt1, …, pattn) is the Update leakage

• Each “operational” leakage is composed of leakage patterns

• (patt1, …, pattn)

28

Common Leakage Patterns

• qeq: query equality

• a.k.a. search pattern

• rid: response identity

• a.k.a. access pattern

• qlen: query length
• trlen: total resp. length

• rlen/vol: response length

• a.k.a. volume pattern

29

• req: response equality

• mqlen: max query length

• mrlen: max resp. length

• srlen: sequence resp. length

• dsize: data size

• usize: update size

• did: data identity

Example Leakage Profiles
• The “Baseline” leakage profile for response-revealing EMMs

• 𝚲 = (ℒS, ℒQ, ℒU) = (dsize, (qeq, rid), usize)

• The “Baseline” leakage profile for response-hiding EMMs

• 𝚲 = (ℒS, ℒQ, ℒU) = (dsize, qeq, usize)

• Several new constructions have better leakage profiles

• AZL and FZL [K.-Moataz-Ohrimenko18]

• VLH and AVLH [K.-Moataz19]

30

Structured Encryption vs. Other Primitives
• Encrypted structures appear implicitly throughout crypto

• Oblivious RAM can be viewed as a

• response-hiding encrypted array

• with leakage profile 𝚲ORAM = (ℒS, ℒQ, ℒU) = (dsize, vol, vol)

• Garbled gates can be viewed as

• response-revealing 2x2 arrays

• 𝚲GG = (ℒS, ℒQ) = (dsize, qeq)

31

How do we Deal with Leakage?
• Our definitions allow us to prove that our schemes

• achieve a certain leakage profile

• but doesn’t tell us if a leakage profile is exploitable?

• We need more than proofs

32

The Methodology

33

Leakage Analysis Proof of Security
Leakage Attacks/

Cryptanalysis

• Leakage analysis: what is being leaked?

• Proof: prove that scheme leaks no more

• Cryptanalysis: can we exploit this leakage?

Leakage Attacks

34

Leakage Attacks
• Target

• query recovery: recovers information about query

• data recovery: recovers information about data

• Adversarial model

• persistent: needs EDS and tokens

• snapshot: needs EDS

• Auxiliary information

• known sample: needs sample from same distribution

• known data: needs actual data

• Passive vs. active

• injection: needs to inject data

35

Leakage Attacks
• Leakage cryptanalysis is crucial but…

• …unfortunately much of the attack literature

• lacks experimental rigor

• is just plain wrong

• overhyped

• there is a need for higher standards

36

Leakage Attacks
• IKK attack

• highly cited but doesn’t work

• too few keywords, auxiliary & test data correlated, …

• Count attack

• based on strong assumptions

• adversary needs to know ≥ 75% of client’s data!

• Some target very niche applications & rely on strong assumptions

37

Leakage Attacks
• Should we discount attacks? Of course not

• More rigorous

• Less hyperbolic

• More upfront about attack limitations & assumptions

• [Blackstone-K.-Moataz’20]: Revisiting Leakage-Abuse Attacks

• [KKMSTY’21]: re-implementation & re-evaluation of most known
attacks

38

How Should we Handle Leakage?
• Approach #1: ORAM simulation

• Store and simulate data structure with ORAM

• polylog overhead per read/write on top of simulation

• still leaks information that is exploitable

• [Kellaris-Kollios-O’neill-Nissim’16, Blackstone-K.-Moataz’20]

• Approach #2: Custom oblivious structures

39

How Should we Handle Leakage?
• Approach #3: Rebuild [K.14]

• Rebuild encrypted structure after t queries

• Set t using cryptanalysis

• Open question: can you rebuild encrypted structures?

• Yes [K.-Moataz-Ohrimenko’18, George-K.-Moataz’21]

• Approach #4: Leakage suppression

• Suppression compilers

• Suppression transforms

40

Leakage Suppression
• Techniques to reduce/eliminate leakage

• Suppressing query equality (aka access pattern)

• general compiler [K.-Moataz-Ohrimenko’18, Geoge-K.-Moataz’21]

• Suppressing co-occurrence (needed by IKK and Count attacks)

• see appendix in [Blackstone-K.-Moataz19]

41

Leakage Suppression
• Suppressing volume (aka response size)

• padding & clustering techniques [Bost-Fouque17]

• computational techniques  

[K.-Moataz19, Patel-Persiano-Yeo-Yung’20]

• “General-purpose” suppression

• worst-case vs. average-case leakage [Agarwal-K.1’9]

• distributing data [Agarwal-K.’19]

42

Leakage Suppression
• New tradeoffs to explore

• leakage vs. correctness [K.-Moataz19]

• leakage vs. latency [K.-Moataz-Ohrimenko18]

43

Thanks!

44

